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Stock Assessment Goals 

• What harvest policy is sustainable and provides 

balance between preventing overfishing and 

attaining maximum fishing opportunities? 

• Does current level of fishing (F) exceed that 

policy? 

• Has abundance (B) been so reduced by past 

fishing as to put the stock and ecosystem at risk? 

• What future catch would implement the policy? 
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Assessment Data and Situations 

DATA 

• Catch only 

• Catch and stock abundance 

• Catch, abundance and/or 

composition 

• Add ecosystem/ climate/ 

habitat factors 
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SITUATIONS 

• Short time series vs. long-
term series containing 
contrast 

• High F vs. low F 

• Stable biology vs. 
environ/eco driven changes 
in process 

• Degree of stock fluctuations 
(M + sigmaR) 

• Degree of spatial viscosity 

 



Assessment Approaches 

• Catch Only 

• Time series, no biology 

• Biomass Dynamics 

• Simple tuning factor 

• Time series tuning 

• STATISTICS:  measurement vs. process error 

• Age and/or Size Structured 

• Noisy data with gaps 

• Full catch-at-age 

• STATISTICS:  Penalized pseudo-likelihood, Integration across 
random effects, Kalman filter 

• Multi-Species with M and/or technological linkages 
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Added Features: 

Spatial 

Multi-species 

Covariates 



Biomass vs. Age Model Dichotomy 
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Biomass Dynamics 

r, K parameters 

Age-Structured 

Empirical Reconstruction; 

Then Spawn-Recruit 

Fmsy gives Bmsy 

 near 0.5*K 

Fmsy gives Bmsy near 0.3*K, 

or lower. 

• Use 3-parameter forms that align these approaches; 

• Don’t ignore effects on SSB when using Fmax as Fmsy proxy 



Desirable Model Characteristics 

• Measures F, B, and productivity 

• Estimates reference points and does forecasting 

• Assimilates diverse types of data 

• Consistency (no dichotomy as on previous slide) 

• Statistically rigorous 

• Biologically realistic 

• Responsive to time-varying ecosystem/environmental 
processes 

• Easy to use; includes A.I. to guide good usage practices 

• Spatial 

• Multi-species 
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How do Data Influence Assessment Results 

in a Generalized Model – Stock Synthesis? 

• Consider three data situation 

1. Scalar observation at end of time series 
• Mean length 

• Current F 

• Bcurrent / B0 

2. Time series of relative abundance 

3. Composition data 
• Perfectly precise ages 

• Ages with ageing imprecision 

• Lengths 
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Example Simulated Population 
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Generate and Analyze Simulated Data Using 

Stock Synthesis 
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1950 1970 1990 2010

SpawnBio Recruits Catch

• Fishery age, length, and imperfect 

ages beginning in 1971 

• Survey of spawning biomass 

beginning in 1981 

• Various scalar measures in 2010 

• Analyze each data scenario using 

Stock Synthesis (SS) 

• Allow estimation of some or all of: 

• Steepness 

• Selectivity 

• M 

• Recruitment deviations 

• Growth 

• Use informative priors in a penalized 

likelihood framework 

• Focus on variance of model results 
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Imperfect Ages 

Lengths (growth known) 

Perfect Ages 

Lengths (growth estimated) 
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No Process Error 

+9 Parameters for Proc Error 

Add M estimation 

Ignore all priors 



Simulation Summary 

• Catch time series plus some simple indicator of F is 
highly informative 

• Three types of composition data ~ equally informative 

• Truly random data 

• Repeated observations of each cohort 

• Adding process error in estimation did not greatly 
degrade precision 
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• A generalized model enables blending information from diverse 

data and making comparisons such as this 

• Lightly informative priors are important part of approach 

• Real data must be much worse than random measurement error 



Other Simulation Studies 

• Fidelity of M and h estimation in assessment 

models (Lee, Piner, Maunder, Methot) 

• Recruitment lognormal bias adjustment protocol to 

obtain consistent results in Max Likelihood 

estimation (Methot and Taylor) 

• Effect of spatial structure on performance of 

assessment models (various) 

• Reports from the UW team to be presented today 
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Parameter Priors and Linked Assessments 

• Meta-analysis:  Two recent papers by Thorson, Taylor, 

Stewart and Punt develop a mixed effects model to 

integrate results across SS applications for several 

west coast species 

• Estimate life history ratio: M/K 

• Estimate coherence in recruitment deviations 

• Survey Q, F, survey process errors, and other factors 

are amenable to derivation of informative priors by 

linking assessments of multiple, co-occurring species 
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Are We Estimating the Right Factors? 

Some Common Practices 

• Hold M constant, but contemporary M is among the 
least known factors! 

• Put parametric, or complex non-parametric (right), 
statistical constraints on selectivity of fisheries 

• Use age-specific surveys, so each has fully 
independent Q 

• Treat survey Q’s as having only uninformative priors 

• Estimate population conditioned on above, but many 
degrees of freedom in the age composition data go 
into the selectivity estimation 
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What Could We Do Differently? 

• Gear experiments, tagging studies and spatial 

distribution studies to make direct measurement of 

selectivity, or linkage of Q between ages in survey; 

include goodness of fit to selectivity data in models 

• Gear experiments and  and spatial distribution 

studies to put priors on overall survey Q 

• With information on Q and selectivity; M estimation 

becomes more feasible 
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Ecosystem and Assessment Models 
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ASSESSMENT 

BOX 



Three Approaches 

1. Deterministic:  Expand system so that Mt = f( Et) is 
now inside the system 

• Multi-species models take this approach (Curti et al) 

• Also recruitment driven by environmental time series 

2. Random Effects:  Treat Mt as a random process and 
integrate over the range of possible values to obtain 
an estimate of the average performance of the 
system, and its variance.  The posterior distribution of 
M is determined by the prior on M and the information 
in the conventional “inside the system” data.  E 
remains outside the model system. 

3.  E as DATA, like a survey of the state variable M. 
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External Factors as Data Regarding Deviations 

• Expected value of factor Et is a function of state variable Mt.  Same logic as 
expected value of a survey is a function of the state variable Biomasst. 

• Model includes the logL from deviations (Et - e(Et) ) in the objective function 

• Example: 

• Recruitment as a random process with annual values Rt 

• A survey, Ot, of young fish is considered a measure, with sampling error, of Rt , 
so e(Ot)=f(Rt) 

• This survey could have been an annual measure of some environmental 
factor.  From the assessment model’s perspective it is just a datum that is 
informative about Rt 

• The estimates of the Rt will depend upon the conventional data, e.g. age 
compositions and young fish surveys, and the new ecosystem/ environmental 
data 

• Stock Synthesis provides this approach for the recruitment process, and soon other 
random processes 
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SUMMARY 

• Generalized assessment models can provide 
consistent results from a diversity of data types 

• Need best practices guide and good A.I. in model 
interface 

• Simulation studies are key to understanding model 
performance in face of diverse data and structural 
situations 

• Must build process error generation into these 
studies 
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LOOKING FORWARD 

• Meta-analysis across species will improve informative priors 

• Environmental data and ecosystem model outputs will routinely be 
used as “data” about time-varying model processes 

• Direct studies on selectivity and catchability will provide better 
estimation of M and the population 

• A protocol for consistent derivation of reference points and harvest 
policies when vital rates are time-varying or ecosystem linked, 
including detection of  regime shifts, will be developed 

• Models that include spatial sub-structure will be applied in relevant 
situations 

• Perceived boundary between single species and multi-species models 
will disappear; just more code and more to review 

• Assessment results are imprecise and will feed into MSE evaluated 
management procedure, not simple control rule:  C=F*B . 
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Challenges for fisheries stock 
assessment: illustrated with 

absolute abundance estimation 

Mark Maunder 
Inter-American Tropical Tuna Commission (IATTC) 

Center for the Advancement of Population Assessment 
Methodology (CAPAM) 

 



Preliminaries 

• First, I would like to thank the organizers for 
inviting me here and giving me the opportunity to 
present and ISSF for financial support  

• It is an honor to be in the same session as Sydney 
Holt, one of the pioneers of modern stock 
assessment 

• However, it is disappointing how little progress 
we have made since Beverton and Holt published 
their stock assessment manual in 1957. 



Major advances 
• Age-structured models 

– VPA, Cohort analysis  
– Pope, Shepherd, Laurec  

• Generalized production model 
– Pella and Tomlinson 1969 

• Integrated analysis and the software to implement it 
– Fournier and Archibald 1982 
– CAGEAN, Deriso, Quinn, and Neal 1985  
– Fournier’s AD Model Builder 
– General models 

• Coleraine, MULTIFAN-CL, CASAL, Gadget 
• Stock Synthesis – Methot (Keynote) 

– Length-structured models  
• Punt 

• Bayesian analysis 
– University of Washington 

• Hilborn, Punt, McAllister 

– In the 1990’s Bayesian statisticians were impressed with the complexity of Fishery Bayesian 
applications 

• Management Strategy Evaluation 
– International Whaling Commission; De la Mare 
– Butterworth, Punt, Sainsbury, Smith, … 
– Bentley (Keynote) 

 



Basics: Data and information 

• Data 
– Typical data 

• Catch 
• Index of relative abundance 
• Age and length composition data 

– Other data 
• Tagging 

• Information needed 
– Absolute abundance 
– Abundance trends 
– Biological processes 

• Natural mortality 
• Growth 
• Recruitment 

– Fishing processes 
• Selectivity 



Basics: Absolute abundance 

• Importance 

– TAC = harvest rate * abundance 

• Information 

– Index of relative abundance 

– Age and length composition data 

– Tagging data if you are very lucky! 



Index of relative abundance 
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Age composition data 



Age composition data 

 

B ≈ C/F 

 

Concept: If you can estimate fishing mortality and 
you know catch, then you can estimate abundance   



Catch curve 
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Catch curve: natural mortality 
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Catch curve: selectivity 
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Catch curve: selectivity 
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Catch curve: selectivity 

• What you observe  

• What F each age experiences 

 

• F also varies over time 



Catch curve: recruitment variation 
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Catch curve: sampling error 
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Catch curve: what you see 
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Length composition data 

An additional complication for catch curves 



Length composition 
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Length composition 
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Length composition: mortality 
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Length composition: recruitment 
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Length composition 
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Length composition: sampling error 
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Length composition: what you see 

Sampling error 
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Length composition: major problem 

• Asymptotic length 



Length composition: asymptotic length 
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Length composition: asymptotic length 
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Length composition: Variation of length-at-age 
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Length composition: Variation of length-at-age 
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Management: Biology on Bmsy/B0 

 

Maunder, M.N. (2003) Is it time to discard the Schaefer model from the stock assessment scientist’s toolbox? Fisheries Research, 61: 145-149. 



Management: selectivity 

 

Maunder, M.N. (2002). The relationship between fishing methods, fisheries management and the estimation of MSY. Fish and Fisheries, 3: 251-
260. 



Requirements for Interpreting data  

• Natural mortality 

• Recruitment 

– Stock-recruitment relationship 

– Annual variation 

• Growth 

• Selectivity 

• Sampling error 



Growth 

 



Uncertainty in growth estimates 

 

Chang, S-K. and Maunder, M.N. (2012) Aging material matters in the estimation of von Bertalanffy growth parameters for dolphinfish 
(Coryphaena hippurus). Fisheries Research 119-120: 147– 153. 
 



Modes in length frequency data differ 
from otolith aging. 
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Tropical tuna aging 

 

Aires-da-Silva et al. (submitted) Improved growth estimates from integrated analysis of direct aging and tag-recapture data: an illustration with 
bigeye tuna (Thunnus obesus) of the eastern Pacific Ocean with implications for management. Fisheries Research. 



BET growth (get L2 sensitivity analysis 
estimates) 
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Stock-Recruitment 

 



Bias in estimating steepness 

 

Lee et al. (2012) Can steepness of the stock-recruitment relationship be estimated in fishery stock assessment models? Fisheries Research 125-
126: 254-261. 



Robust steepness assumptions 

 

Zhu et al. (2012). Implications of uncertainty in the spawner-recruitment relationship for fisheries management: an illustration using bigeye tuna 
(Thunnus obesus) in the eastern Pacific Ocean. Fisheries Research 119– 120: 89– 93. 



Survival implications of the Beverton-Holt and Ricker models 
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The MTM Low fecund stock-recruitment 
relationship 

 

Taylor et al. (2013) A stock-recruitment relationship based on pre-recruit survival, illustrated with application to spiny dogfish shark. Fisheries 
Research 142: 15– 21. 

Spawning biomass 



A stock–recruitment model for highly fecund species 
based on temporal and spatial extent of spawning 

Spawning biomass 
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Maunder, M.N. and Deriso, B.R. 
(2013) A stock–recruitment 
model for highly fecund species 
based on temporal and spatial 
extent of spawning. Fisheries 
Research 146: 96–101. 



Natural mortality 

 



Summer flounder natural mortality 

• Value used not based on data or any 
reasonable rationale 

• Obvious sex differences in M 

• Changing the assumed male M from 0.2 to 0.3 
changed the recommendations from closing 
the fishery to increasing the TAC 

 

M.N. Maunder, R.A. Wong. 2011. Approaches for estimating natural mortality: Application to summer flounder (Paralichthys dentatus) in the U.S. 
mid-Atlantic. Fisheries Research 111, 92– 99. 



 

Kenchington, T.J. (2013) Natural mortality estimators for information-limited fisheries. Fish and Fisheries x: x-x 

“None of the 30 can provide accurate estimates for every species, and none appears 
sufficiently precise for use in analytical stock assessments, while several perform so 
poorly as to have no practical utility” (Kenchington 2013). 



 

Lee et al. (2011) Estimating natural mortality within a fisheries stock assessment model: an evaluation using simulation analysis based on twelve 
stock assessments. Fisheries Research, 109: 89–94. 



Selectivity 



Selectivity 

Waterhouse et al. (in prep) Fisheries Research.  
Also see Sampson and Scott (2011) Canadian Journal of Fisheries and Aquatic Sciences 68:1077-1086. 



Catchability = 1 

• Consistently proved to be an incorrect 
assumption 



Sampling error 

• Effective sample size for correlated 
composition data 

• Modeling process error 

– Assumed in the observation error 

– Temporal variation in growth, M, selectivity, 
catchability 

• Data weighting 

 



Abundance diagnostics 

 



R0 likelihood component profile 
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Wang et al. (in prep) R0 profiling as a diagnostic for selectivity curve structure in integrated stock assessment models. Fisheries Research. 

Correctly specified 



R0 likelihood component profile 
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Wang et al. (in prep) R0 profiling as a diagnostic for selectivity curve structure in integrated stock assessment models. Fisheries Research. 

Correctly specified Incorrectly specified 



Age-structured Production Model Diagnostic 

• Index consistent with dynamics and catch 

• Influence of composition data 

• Recruitment variation or regime changes 



Hypothetical example 1: 
composition influence 
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Hypothetical example 2:  
mispecified steepness 
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Research impediments: why we have 
not made progress 

• Rogue academics seeking fame and funding 
• Trendy “soft” science for fisheries management: 

climate change, ecosystem based management, 
marine protected areas, environmental 
correlations  

• Focus on easy publications (e.g. the first to put an 
archival tag on a species) 

• Lack of assessment scientists 
• Assessment scientists have to do assessments 

and not research 
• More assessments requested (e.g. result of ACL’s) 

 



Summary 

• We don’t know much about 

– Growth, recruitment, natural mortality, and selectivity 

• These are vital for interpreting data and providing 
management advice 

• It is difficult to do research on these topics for a 
number of reasons 

• We either need to prioritize this research or apply 
management that is robust to uncertainty (not 
just be conservative) 
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Overview 

• Which assessment details and  

process-error* assumptions matter most? 

– Selectivity 

– Natural mortality 

– Catchability  

• Survey and CPUE 

 

• Application and developments 
 

 

*Process errors are time-specific 



Why is accounting for  

process errors important? 

For appropriate uncertainty estimation 

– In Alaska some FMP control rules require 

“reliable” estimate of uncertainty 

– Nationally, ACLs formally depend on scientific 

uncertainty 

  

and…the expected value never happens 



Sources of uncertainty in pollock FMSY    
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Effect of uncertainty on TAC upper limit 
(eastern Bering Sea pollock) 
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FMSY  Uncertainty 



General process-error  

implementation details 

• Bayesian 

• Non-stationarity allowed 

• Takes advantage of unallocated arrays 

(ADMB feature) 

• Intermediate to full random-effects (SAM) 

– But possibly with better intuitive properties? 



Overview 

• Which assessment details and process-

error assumptions that matter the most? 

– Selectivity 

– Natural mortality 

– Catchability  

• Survey and CPUE 

 

 

 



Selectivity estimation 

• Can affect population scale 
– Surveys/indices 

– Fs 

• Time-varying method 

– Penalized likelihood 

• How to objectively set year-to-year 

variability? 
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Tuning smoothness 

Step 1 

tiny 

penalty 

 

Step 2 

“tuned” 

penalty 

 

Step 3 “corrected” penalty 

 



Diagnoses on retrospective 

patterns 

 



 



 



Alternative  

reduced-parameter approach… 

Triple-separability 

Attributed to Dmitri Vasilyev TISVPA—adds a 

cohort effect to year and age 

Trick is in normalizing 

– Consider 10 ages and 30 years…time-varying 

selectivity HIGHLY parameterized… 

– Can be reduced along three axes: 

• Parameters by age, by year, and cohort 



Time-varying 

versus 
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Overview 

• Which assessment details and process-

error assumptions that matter the most? 

– Selectivity 

– Natural mortality 

– Catchability  

• Survey and CPUE 

 

• Application and developments 
 

 



State-space RE (SAM)  AMAK  

 

Selectivity over 

time 

North Sea cod with random walk in M 



North Sea cod with random walk in M 

Multi-species model Random walk 



Chilean Common hake  

(Merluccius gayi) 
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Gatica-Molina et al. (In prep.) INPESCA, Talcahuano, Chile 



Conclusions 
• Accounting for process errors should be 

included for management parameters 

– Either directly (e.g., formally risk-averse) or  

– Developing operating model for management 

strategy evaluation 

• Objective methods for model selection should 

include retrospective (including cross-

validation) evaluations 

• Approach here useful for quick evaluation of 

information content of data 

– E.g., if there is a reflection of ecosystem effects 

 

 



Thanks! 

 



A survey/exploitation vector 
autoregressive model  

for use in marine fishery 
stock assessment  

Grant Thompson 

Alaska Fisheries Science Center 



Two problems 

• Conventional “data-rich” assessment models contain 
some notoriously hard-to-estimate parameters, e.g.: 

• Natural mortality rate (M) 

• Survey catchability 

• Stock-recruitment “steepness” 

• Conventional “data-moderate” assessment methods 
often imply some very strong assumptions, e.g.: 

• Exploitable biomass = survey biomass 

• Projected expl. biomass = current expl. biomass 

• FMSY = M 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 2 

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. 

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy. 



A possible answer to both problems: SEVAR 

• Stands for “survey/exploitation vector autoregressive” 

• Uses survey index (b) and catch (c) data only  

• Linear time series with p lags in two state variables: 

• Relative biomass r  b/bave 

• Exploitation rate u  c/b 

• Even though survey index may be relative, absolute 
catch recommendations can be developed, using: 

• c  b  (c/b) 

• uMSY estimated, no parameter values assumed 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 3 

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. 

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy. 



“But population dynamics are nonlinear” 

• Here is a time series of stock sizes from a model 

with randomly varying exploitation rate, a Ricker 

SRR, and no process error or observation error: 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 4 

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. 

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy. 



Can a linear model mimic nonlinear dynamics? 

• Here is the fit to the same data from a linear model 

with an optimized number of lags (=3, by AIC): 

 

 

 

 

 

• R2 = 0.999 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 5 

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. 

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy. 



State-space form, part 1 

• Transition equation: 

 

 

• where 

 

 

• and where k = 22 matrix,  = 21 vector, and 

pro = 22 matrix 
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Develop r isocline from transition equation 

• If r is in equilibrium, transition equation for r becomes: 

 

 

• Solving the above for requ gives a linear isocline in u: 

 

 

 

 

• Meaning: rMSY = r0/2, uMSY = uext/2; like Schaefer 
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State-space form, part 2 

• Observation equation: 

 

 

• where 

 

 

• and where Dt = 22 identity matrix or 22 zero 

matrix, and obst = 22 matrix 
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Parameters 

• Total number of parameters = 4(p+1) 

•   22p,    2, pro  2 

• Off-diagonal elements of pro assumed = 0 

• Number of lags p is a “pseudo-parameter” 

• Fixed for a given run, profile across runs 

• Choose optimal value by BIC 

• Observation error covariance obst assumed known 

• Follows from standard errors of observed c and b 
and the relationship between b and c/b  

 

 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 9 
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Estimation 

• Problem: estimation of parameters in state-space 
models can be difficult 

• Combination of process and observation error 

• For a linear model with only one lag (p=1), the Kalman 
filter gives the correct marginal likelihood after the 
states have been integrated out 

• But we are allowing p>1 

• A neat trick: by stacking and augmenting matrices in a 
certain way, the 2-dimensional state space model with 
p lags can be transformed into a 2p-dimensional model 
with only one lag, with the same number of parameters 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 10 
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South African anchovy: fit to survey index 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 11 

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. 

It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy. 

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

1980 1985 1990 1995 2000 2005 2010 2015

Su
rv

e
y 

in
d

e
x

Base model estimate Observed



SA anchovy: observation error bootstrap 
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SA anchovy: CDFs of ln(depletion) and ln(OFL) 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 13 
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Future directions 

• Need to determine whether it actually works 

• Simulations conducted so far (with very small 

sample size) indicate that SEVAR works at least 

as well as a full age-structured model 

• Seemed to perform about as well as most age-

structured models at the SISAM workshop 

• Include routines for model averaging (across p) 

• Allow parameters to change between time blocks 

• Make the code usable by other people 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 14 
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Addressing challenges in single species

assessments via a simple state-space assessment

model.
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Features of deterministic models

+ Super fast to compute

+ Fairly simple to explain the path from data to stock numbers (especially VPA)

− Difficult to explain why it works (converges), and what a solution mean

− These algorithms contain many ad-hoc settings (e.g. shrinkage, tapered time weights)

that makes them less objective

− No quantification of uncertainties within model

? What exactly is the model

- The assumptions are difficult to identify and verify

- With no clearly defined model more ad-hoc methods are needed to make predic-

tions

− No framework for comparing models (different settings)

~anielsen/index.html


Features of full parametric statistical models

+ Acknowledges observation noise

+ All model assumptions are transparent

+ Different model assumptions can be tested against each other (e.g. is F5 = F6?)

+ Different data sources can be included and correctly and objectively weighted

+ Estimation of uncertainties are an integrated part of the model

− Trade-off between the number model parameters and flexibility of the model

(e.g. Fa,y vs. Fa,y = Safy)

− Too often ad-hoc solutions are needed (e.g. fixing variance parameters, or setting

fixed penalties)

− More advanced software needed (ADMB!)

~anielsen/index.html


State-space assessment models

� This model classa is used in most other quantitative fields

� It is a very useful extension to full parametric statistical models.

� Introduced for stock assessment by Gudmundsson (1987,1994) and Fryer (2001).

� The reason state-space models have not been more frequently used in stock assessment

is that software to easily handle these models has not been available

� Can give very flexible models with low number of model parameters

� For instance we can include things like:

F3,y is a random walk with yearly variance σ2

� Importantly σ2 is a model parameter estimated in the model.

aa.k.a. random effects models, mixed models, latent variable models, hierarchical models, ...

~anielsen/index.html


Illustration of the three types of models
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Model

States are the random variables that we don’t observe (Na,y, Fa,y)(
log(Ny)

log(Fy)

)
= T

(
log(Ny−1)

log(Fy−1)

)
+ ηy

Observations are the random variables that we do observe (Ca,y, I
(s)
a,y)(

log(Cy)

log(I
(s)
y )

)
= O

(
Ny

Fy

)
+ εy

Model and parameters are what describes the distribution of states and observations

through T , O, ηy, and εy.

Parameters: Survey catchabilities, S-R parameters, process and observation variances.

All model equation are as expected:

� Standard stock equation

� Standard stock recruitment (B-H, Ricker, or RW)

� Standard equations for total landings and survey indices

~anielsen/index.html
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Avoiding ad-hoc choices — Eastern Baltic Cod

� Using the State-space Assessment Model (SAM) gives us an objective criteria

~anielsen/index.html


Evolving selectivity — North Sea Cod
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From Fryer’s listed disadvantages

� Requires normally distributed errors. No, but they are still convenient.

� Requires linear approximation of non-linear equations. Not anymore.

� There is some arbitrariness in the starting values. Not anymore.

� The likelihood can be very flat. No change.

� Maximum likelihood estimation can take a long time. 1-2 minutes on my laptop.

� Initial coding is hard. ADMB makes it easier

� Favours status quo.

~anielsen/index.html


Robustifying
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� In the standard model ∆ logFy = logFy − logFy−1 is assumed Gaussian

� Instead use a mixture, such as: ∆ logFy ∼ (1 − p)N(., .) + pt1(., .)

� Same technique can be used to robustify w.r.t. observation outliers or recruitment

spikes.
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Robustifying w.r.t. recruitment spikes (Haddock)
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stockassessment.org, SISAM−haddock−for−figs, r2219

� Comparing Gaussian (gray) with robust - no visual difference.

� Gaussian process assumptions were not restricting recruitment.
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Robustifying w.r.t. Fishing mortality (Haddock)
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� Implies a big change in one years recruitment

� To accommodate the change in R, Fa=1 changed a lot in those years
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Robustifying w.r.t. observed catch (Haddock)
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� Makes the model tolerant of outliers
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Summary

� State-space assessment model is a valid alternative when:

– Catches cannot be considered know without error

– Quantification of uncertainties are needed

– Ad-hoc specifications are problematic

– Parametric structures are considered too rigid

– The number of model parameters are worrying

� Robustifying is a useful techniques for:

– Making the model tolerant w.r.t. outliers

– Identifying problematic model assumptions

– Allowing “big jumps”

~anielsen/index.html


1.06 Evaluating predictive power of VPA and 
SCAA models when natural mortality is non-
stationary !

Doug	  Swain	  
Gulf	  Fisheries	  Centre	  
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Moncton,	  NB	  Canada	  
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Non-stationarity in natural mortality rates of 
Atlantic cod: contrasting estimation performance of 
virtual population and statistical catch-age models!

Doug	  Swain	  
Gulf	  Fisheries	  Centre	  

Fisheries	  and	  Oceans	  Canada	  
Moncton,	  NB	  Canada	  

Sean	  Cox	  
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Study	  populaOons:	  SGSL	  and	  EGB	  cod	  



VPA	   SCA	  

Rock’em	  sock’em	  stock	  assessments!	  



  

log Mt ,a ~ Normal log Mt−1,a ,σ M
2( )

M1,a ~ Normal µM ,τ M
2( )

Model	  for	  non-‐staOonary	  M	  
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Input	  age-‐composiOon:	  

	  
	  
S.	  Gulf	  St	  Lawrence	  

	  
	  
E.	  George’s	  Bank	  

Fishery	   1971-‐2010	  (0.55)	  	  	  	  	  	  	  	  	  	  	  	  age	  2-‐11	   1978-‐2011	  (0.49)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  age	  1-‐10	  

DFO/Industry	   RV:	  1971-‐2010	  (0.32)	  	  	  	  	  age	  2-‐11	  
MS:	  2003-‐2010	  (0.38)	  	  	  	  age	  2-‐11	  
LL	  1995-‐2010	  (0.22)	  	  	  	  	  	  	  age	  5-‐11	  

RV:	  1986-‐2011	  (0.71)	  	  	  	  	  	  	  	  	  	  	  	  	  	  age	  1-‐8	  
	  

NMFS	   NMFS_S1:	  1978-‐1981	  (0.81)	  	  age	  1-‐8	  
NMFS_S2:	  1982-‐2011	  (0.58)	  	  age	  1-‐8	  
NMFS_F:	  1978-‐2011	  (0.79)	  	  	  	  age	  1-‐5	  

Weight-‐age	   1971-‐2010	   1978-‐2011	  



VPA	  
SCA	  

SGSL	  cod:	  M	  trends	  
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SGSL	  cod:	  M5-‐8	  and	  SSB	  



VPA	  
SCA	  

EGB	  cod:	  M	  trends	  
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EGB	  cod:	  M5+	  and	  SSB	  
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SGSL	  simulaOon	  tests:	  M	  5-‐8	  

VPA-‐est	   SCA-‐est	  

VPA-‐sim	  

SCA-‐sim	  



SGSL	  simulaOon	  tests:	  SSB	  

VPA-‐est	   SCA-‐est	  

VPA-‐sim	  

SCA-‐sim	  



VPA	   SCA	  

SGSL	  cod:	  Simulated	  Fishery	  catch-‐at-‐age	  



VPA	  

SGSL	  cod:	  Simulated	  Survey	  catch-‐at-‐age	  

SCA	  



EGB	  simulaOon	  tests:	  M	  5+	  

VPA-‐est	   SCA-‐est	  

VPA-‐sim	  

SCA-‐sim	  



EGBsimulaOon	  tests:	  SSB	  

VPA-‐est	   SCA-‐est	  

VPA-‐sim	  

SCA-‐sim	  



Conclusions	  

1.  Non-‐staOonary	  M	  trends	  comparable	  for	  fully-‐
recruited	  age	  classes,	  but	  some	  differences	  may	  
be	  important	  

2.  SCA	  appears	  be`er	  for	  M	  trends,	  but	  over-‐
esOmates	  SSB	  for	  both	  cod	  stocks	  

3.  VPA	  inconsistent	  for	  M,	  but	  always	  under-‐
esOmated	  SSB	  

4.  InvesOgaOng	  potenOal	  causes	  for	  changing	  M	  
should	  consider	  the	  stock	  assessment	  model	  used	  



P. R. Crone, M. N. Maunder, B. X. Semmens, J. L. Valero, and J. D. McDaniel 
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Presentation outline 
•CAPAM background 

•Workshop statistics 

•Results 

o Keynote speaker presentations 

o Major findings/high priority research areas 

•Current and Future work 

 

CAPAM – Selectivity Workshop 



CAPAM background 
• Established Fall 2012 under NOAA-SWFSC, IATTC, UCSD-SIO 

 

• Infrastructure includes principal investigators, post-docs, research associates, collaborators, visiting 
scientists, advisory panel, and administrative support staff 

 

• Needs identified in Reauthorization of the Magnuson-Stevens FCMA (2007)  

 

• Mission is research, education, and outreach that addresses animal population dynamics, models, and 
assessments associated with marine fishery resources 

 

• Objectives 

o Evaluate/improve methods used in fish stock assessment model development and application 

o Afford educational and training opportunities to prepare competent researchers in fishery science 

o Deliverables include research papers, workshops, short-courses, classes, and stock assessments 
 

• Main programs and specific projects 

o Good practices in stock assessment modeling (selectivity, growth, data/likelihood weighting, diagnostics, 
etc.) 

o SIO/NOAA education and training for next generation of fishery assessment scientists (classes, graduate 
thesis collaboration, stock assessments, etc.) 

o White sea bass assessment 

 

• Funding is obtained from formal RFPs, as well as direct contributions 

CAPAM – Selectivity Workshop 



Workshop statistics 
•Held from March 11-14, 2013 at the SWFSC in La Jolla, CA 

•Funded by NOAA, SIO, and ISSF 

•75 participants (USA, Canada, Japan, China, Taiwan, S. Africa, Spain) 

•35 participants via remote access available online (WebEx) 

•Agenda 

o 4 keynote presentations under major sub-topics of selectivity 
 Underlying processes - D. Sampson 

 Specification and estimation - J. Ianelli 

 Model selection and evaluation - A. Punt 

 Impacts on management - D. Butterworth 

 Group discussions 

o 21 research presentations 

o 2 work sessions 
 Modeling selectivity/simulation methods using SS - I. Taylor, H-H. Lee, J. Valero 

 Developing ADMB software libraries using selectivity examples - S. Martell, A. Whitten, M. Supernaw 

o Deliverables 
 Interactive and efficient forum for training and information exchange 

 Archive of selectivity manuscripts from historical literature  

 Workshop report 

 Special issue in professional journal (Fisheries Research) 
 

 

CAPAM – Selectivity Workshop 



Factors Influencing Selectivity 

• Gear selection 

o Fish species, sex, age, size, behavior, etc. affect which fish contact and are 

caught/retained by a specific type of fishing gear 

• Spatial locations of the fish and fishing operations 

o Fishing gear operates at a local (fish) scale and can only catch fish that are near/contact 

the gear 

o At a broader (stock-wide) scale, population selection depends on the spatial distribution 

of fishing operations relative to the spatial distribution of the fish 

• Mixture of fishing gears 

o When there are multiple gear types with different selection properties, the relative 

catch by each gear type determines the population-level selectivity 

Results (keynote presentations) 
 Underlying processes (D. Sampson) 

CAPAM – Selectivity Workshop 



Functional forms (splines) and ‘smoothing’ 

Pros 
 Robust estimation 

 Flexible 

 Easy check 

 Rarely headache (few surprises) 

 Performance in MCMC 

 Extends easily to time-varying 

 

Cons 

 Knowing magnitude of ‘tension’ 

 Optimal frequency/location of knots  

 May perform poorly at tails 

 Confounds re-weighting  

 Should be tested further 

 Objective criteria needed for 

‘smoothing’ penalties 

Non-parametric smooth selectivity 

CAPAM – Selectivity Workshop 

Results (keynote presentations) 
 Specification and estimation (J. Ianelli) 



 The structure of most (perhaps all) operating models is too simple 
and leads to simulated data sets looking “too good”  

 Andre’s suggestion: if you show someone 99 simulated data sets and 
the real data set, could they pick it out? 

 Future simulation studies should 

 Include model and fleet selection 

 Focus on length-structured models 

 Examine whether selectivity is length- or age-based 

CAPAM – Selectivity Workshop 

Results (keynote presentations) 
 Model selection and evaluation (A. Punt) 

 

Simulation ↔ Selectivity   



CAPAM – Selectivity Workshop 

Results (keynote presentations) 
 Impacts on management (D. Butterworth) 

 Issues arise from the relative paucity of older/larger fish in catches and/or 
surveys, for which heavy F at those ages/lengths is not the only possible 
explanation 

 Analyses ubiquitously point to at least some selectivity doming, with the 
underlying mechanisms not always clear 

 This can sometimes have important implications for BRPs and associated 
management advice 

 Those BRPs are unlikely to be robust to alternative explanations of domed 
selectivity, higher M, or increasing M at older ages 

 

Selectivity at older ages 

“… this is not about the best assessment model, 
but about the best management.” 



Results (major findings/high priority research areas) 
• Contact selectivity and availability 

•General selectivity specification and estimation 

• Asymptotic or dome-shape selectivity 

• Size- or age-based selectivity 

• Fleets as proxies for spatial processes 

• Constant or time-varying selectivity 

• Poor composition data 

•Management strategy evaluations 

• Survey selectivity 

•Model selection and diagnostics 

 

CAPAM – Selectivity Workshop 



Current and Future work 
• Continue with selectivity research, including splines, data/selectivity type: length vs. 

age, data weighting, VPA - spatial F/selectivity form 
o Establish working group / begin synthesis and documentation related to Good Practices Guide 

o Visiting scientist research 

 

• Begin related research projects for GPG (e.g., modeling growth in stock assessments) 
o Prepare for growth workshop (late 2014) 

 

• Conduct classes/short courses—SIO and international 

 

• Build on momentum to link with institutions/programs involved in similar research 
(regionally, nationally, and internationally) 
o Stock assessment modeling issues  

o SISAM model setup contributions  

o Collaborative work for WCSAM (natural mortality, data quality, retrospective bias) 

o ADMB Project 

o SS model development 

o Joint workshops (national and international) 

o Next generation of stock assessment scientists  

• Visit www.CAPAMresearch.org 
 

 

 

CAPAM – Selectivity Workshop 



CAPAM – Selectivity Workshop 

Thanks … 



TUESDAY, JULY 17, 2013 

In the news 

WCSAM IS ON AND WORLD TUNES IN 

VOLUME 280 

NUMBER 144 
Suggested  retail price 

$1.00 

WEATHER 
TODAY: Sun, some clouds, possible T-storms. 

High 88-91. Low 79-81. 

TOMORROW: Very warm, afternoon showers. 

High 92-95. Low 80-83. 

 

Growth workshop to be held 

late 2014 in La Jolla, CA  

WCSAM draws much public and media 

attention around Seaport Hotel & World 

Trade Center. Scientists from all over the 

world will be focusing this week on the 

application and future of stock assessment 

methods, critical steps for developing 

sustainable fishery management advice and 

good resource stewardship. 

Local, Page B1  

Fountain of Youth is in FL and 

restores youth not by drinking, 

but of all things … 

Health, Page E1 

CAPAM will be hosting a 

workshop next year on modeling 

growth in stock assessments and 

registration is expected to be brisk, 

if not frenzied. Organizers are 

encouraging scientists to get their 

research efforts underway soon and 

not be left behind for this 

important event. Further details 

available online by late summer. 

Visit www.CAPAMresearch.org. 

Page A2 

Celtics shake-up roster and 

now to leave Boston, for of all 

places …  

Sports, Page C1 

SEAPORT DISTRICT 

WELCOMES STOCK 

ASSESSMENT FORUM 

Unifying theory and our 

existence finally solved, and by 

of all people …  

Science, Page D1 



Helena Geromont and Doug Butterworth 

MARAM (Marine Resource Assessment and Management Group) 
Department of Mathematics and Applied Mathematics 
University of Cape Town, Rondebosch 7701, South Africa 



Key management questions: 

   

Where are we? 
• Stock assessment 
 

Where do we go? 
• Policy decision 
 

How do we get there? 
• Complex annual assessments 

 or 

• Empirical Management Procedures  

     (simple harvest control rules) 

 

TIME 

BMSY 

BMEY 
Target 
stock 
size 



Management advice currently based on complex annual 

assessments 

Typically require regular survey and large ageing 

programmes 

Costly 

Need to explore simpler and cheaper alternatives 

   

Examples: North Sea Sole,  

Gulf of Maine/ Georges Bank Witch Flounder and Plaice 

 

 



Retrospective analyses: go back 20 years. 

Project forward with a simple empirical MP. 

For a common basis for comparison, tune the MPs to 

achieve (at some %-ile) the same final spawning biomass 

as in assessment. 

Compare performance (catches, variability, etc.) to what 

was achieved in practice by the combination of complex 

assessments linked to management approaches as applied 

over that period. 
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1. Deterministic “hindsight” projections  

 MP tuned to reach final spawning stock biomass 

 estimated in assessment (2009 for sole) 

        

Key assumptions: 

•  Same selectivity-at-age vectors 

•  Same S/R residuals 

•  Same survey index of abundance residuals 

      as assessment  

 



1. Deterministic “hindsight” projections:  
 

2. Stochastic “forecast” projections:   

 MP tuned so that lower 2.5%-ile reaches current biomass 

 estimated in assessment 

 
Generate future: 

• Selectivity and weight-at-age vectors: re-sample from past 

• Stock-recruitment log-normal residuals (σR=0.8 for sole) 

• Survey log-normal residuals (σi=0.2 for sole) 

 



1. Deterministic “hindsight” projections:     

2. Stochastic “forecast” projections:     

3. Deterministic “hindsight” projection of “forecast” MP: 

 Use best performing MP obtained in step 2 in 

 deterministic projection 

 Key assumptions: 

•  Same selectivity-at-age vectors 

•  Same S/R residuals 

•  Same survey index of abundance residuals 

      as assessment  

 



Spawning biomass (tons) Annual catch (tons) 

Constant catch ─ 

Slope MP   ▲ 

Target MP  ● 

Observed   ♦ 



Spawning biomass (tons) Annual catch (tons) 

Target MP: 

Simulation 1       ─ 

Observed        ♦ 



Spawning biomass (tons) Annual catch (tons) 

Target MP: 

Simulation 1 ─ 

Simulation 2 ─ 

Simulation 3 ─ 

Observed  ♦ 



Spawning biomass (tons) Annual catch (tons) 

Target MP: 

95% PI  --- 

Median  ─ 

Observed   ♦ 



Average change in catch  Annual average catch (tons) 

2009 SSB/SSBtarget 
min SSB/SSB target 

Observed ─ 



Annual average catch (tons) Average change in catch  

2009 SSB/SSBtarget Min SSB/SSBtarget 

Observed ─ 



Average change in catch  Annual average catch (tons) 

2009 SSB/SSBtarget 
min SSB/SSB target 

Observed ─ 



 

!! Retrospective patterns!! 



Plot copied from F. Witch Flounder by S.E. Wigley and S. Emery. February 2012  



Average change in catch  Annual average catch (tons) 

2010 SSB/SSBtarget 
min SSB/SSB target 

Observed ─ 



Average change in catch  Annual average catch (tons) 

2010 SSB/SSBtarget 
min SSB/SSB target 

Observed ─ 



MPs perform as well or better than what occurred (based on annual 

complex assessments)  

Annual assessment based management add unnecessary variation 

to management measures without reducing resource risk 

Changed role for complex assessments: provide operating models 

at multi-year intervals for simulation testing of these simpler MPs 

Saving on resources otherwise needed for monitoring (e.g. ageing 

of catch need not be annual) 
 

 



Apply to more stocks (including tricky assessments) 

Comprehensive robustness tests (e.g. include 

implementation error) 

Performance given reviews after shorter MP 

application periods 

 

 





MPs perform as well or better than what occurred (based on annual 

complex assessments)  

Annual assessment based management add unnecessary variation 

to management measures without reducing resource risk 

Changed role for complex assessments: provide operating models 

at multi-year intervals for simulation testing of these simpler MPs 

Saving on resources otherwise needed for monitoring (e.g. ageing 

of catch need not be annual) 

MP approach seems to be able to handle cases with relatively strong 

retrospective patterns 
 

 





Thank you for your attention 

We thank José de Oliveira, Charlie Edward and 

Laurie Kell, for assistance in providing the ICES 

assessment data we have used. 

 

Financial support of the National Research Foundation (NRF) of South Africa is 

gratefully acknowledged. 



What generates retrospective 

patterns in statistical catch-at-age 

assessment models? 

A lot of people1,2,3,4 

1 University of Washington, School of Aquatic and Fishery Sciences 

2 CAPAM, Center for the Advancement of Population Assessment Methodology 

3Simon Fraser University 

4University of British Columbia 
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Outline 

What is a 
retrospective bias 

What factors produce 
retrospective patterns 

Are there generalities 
across these factors? 

Conclusions and 
future work 

Mohn, 1999 

Selectivity? 
Natural  mortality? 

Growth? 
Catchability? 



What is a retrospective pattern? 

“The retrospective problem is a 
systematic inconsistency among a series 
of estimates of population size, or 
related assessment variables, based on 
increasing periods of data.” 

Mohn, 1999 

“There are severe implications for both 
managers and the stock itself when stock 
assessments exhibit strong retrospective 
patterns. Management advice will be biased 
and could lead to continued overfishing of the 
stock, inability to achieve rebuilding targets, 
and loss of potential yield.” 

Legault, 2008 



Previous studies have explored  

retrospective patterns and  identified  some 

of the factors causing them  

Can be caused by a number 
of factors, but all require a 
change in parameter value 
or assumed model value 
over time. 

• Natural mortality 
• Catch series 
• Survey  catchability 
• Closed areas 



Main questions 

• What processes generates retrospective 
patterns? Can we generate them in catch-
at-age models? 

 

• What is the magnitude of these patterns 
for d ifferent processes? 

 

• Is the use of time-varying selectivity to 
address these patterns appropriate? 

 



This project uses a stock assessment 

evaluation framework 

Estimating 
model (EM) 

Performance 
measures 

Operating 
model (OM) 1 

Operating 
model (OM) 2 

Operating 
model (OM) … 

Operating 
model (OM) n 

• Biomass 
• F 
• Recruitment 
• Mohn’s ρ 

𝜌 =
𝑋 𝑦1:𝑦 ,𝑦 − 𝑋 𝑦1:𝑦2 ,𝑦

𝑋 𝑦1:𝑦2 ,𝑦
 

All these steps are done using Stock Synthesis as 
the simulation and estimation platform 

Conditioning 
model (CM) 



A more detailed  description of the 

model 

1913 1938 1963 1988 2013

Year

Simulation

Catches

Catch comp. data

Survey

Survey comp. data

Estimated: • Growth (K, L∞, CV) 
• R0 

• Rec. deviations 
• Selectivity parameters 
• Q 

Fixed: • M 
• Steepness 
• σR 

Parameters 

Retrospective runs 5-year retrospective analysis 



Experimental design: 3 fishing patterns, 3 

types of change, and  3 processes 
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Retrospective patterns can be 

generated  when there is model 

misspecification 

Cod, time varying 
growth 

Flatfish, time varying 
selectivity 
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Scenarios 

Base 
Faster growth 

Trend 

Mohn’s ρ statistic allows to evaluate 

retrospective patterns across scenarios 

Slower growth 
Trend Faster growth 

Step 

Slower growth 
Step 

Not-so-
recent 

Recent Not-so-
recent 

Recent 
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Recent 
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Different factors have a d ifferent effect 

depending on the life history type 

Scenarios (no I’m not writing them all out) 

Sardines 
(What is wrong with you?!!!) 

Cod 
(The well-behaved) 

Flatfish 
(The ‘good enough’) 

First three are the 
‘base cases’ and 
happily unbiased! 
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F trajectories do 
not  affect these 
patterns 



Different factors have a d ifferent effect 

depending on the life history type 

Scenarios (no I’m not writing them all out) 

Sardines 
(What is wrong with you?!!!) 

Cod 
(The well-behaved) 

Flatfish 
(The ‘good enough’) 

M
o
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’s
 ρ

 

Timing is more 
important for cod 
than for sardine 
and flatfish  

But the shape of 
change is more 
important for 
sardine and flatfish 



What comes next? 
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Conclusions 

• Retrospective patterns were generated  by 

all the factors explored . 

• What factors affect retrospective patterns 

the most seem related  to life history. 

• Direction and  magnitude of a 

retrospective pattern are affected  by the 

d irection and  magnitude of the change. 

• Higher variability in the data generate 

higher variability in the Mohn’s ρ statistic. 
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Context

This has all been developed within the
a4a framework
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The Problem

There are often several plausible
assessment models

17th July 2013 3



Solutions

• Choose one model
• Present several models
• Hierarchical modelling
• Combine models

17th July 2013 4
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• Choose one model
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An Assessment Process

Model
Selection

Model 1

Model 2

Scenarios

Assessment

Advice
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Model Averaging

Model
Averaging

Model 1

Model 2

Scenarios

Assessment

Advice
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Model Choices in a4a

With a linear model you can fit
• linear and smooth functions of age and year
• seperable models
• partially seperable
• non-seperable
• step changes (in level, in smoother form)
• covariates (smoothed and linear)

These can be applied to log F, log catchability, stock recruit
parameters, observation variance.

17th July 2013 7



Model Choices in a4a

For example in selectivity

log Q ∼
offset

︷ ︸︸ ︷

log Contact Selectivity+ log Availability
︸ ︷︷ ︸

formula

17th July 2013 8



Model Selection in a4a

• likelihood based

• AIC (Akaike Information Criterion)

• BIC (Bayesian or Schwarz Information Criterion)

• Posterior model probabilities

• HME (Harmonic Mean Estimator)

• BMA (Bayesian Model Averaging)

All these balance complexity and fit.

17th July 2013 9



Model Choices
(log) fishing mortality

fmodel1 <- ~ s(age, k = 4, by = breakpts(year, c(1998,2003)))
+ s(year, k = 8)
fmodel2 <- ~ te(age, year, k = c(4, 8))

(log) survey catchability

qmodel1 <- ~s(age, k = 4)
qmodel2 <- ~poly(age, 2)

AIC fmodel1 fmodel2
qmodel1 317.238 316.506
qmodel2 317.174 316.0118

17th July 2013 10



Model Fits: Fbar

year

0.
2

0.
4

0.
6

0.
8

1995 2000 2005

all

17th July 2013 11



Model Fits: SSB
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Approaches to Model Averaging

• weighted simulation schemes

• AIC

• posterior model probability (HME)

• Full model averaging schemes

• smooth AIC (bootstrap)

• RJMCMC
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Approaches to Model Averaging

We want to sample from:

P(model,model parameters |data)

Weighted simulation schemes do:
1. simulate: P̃(model |data)

P̃(parameters |model)

17th July 2013 14



Approaches to Model Averaging

We want to sample from:

P(model,model parameters |data)

Full model averaging schemes do:
1. simulate: P̃(model,model parameters |data)

17th July 2013 15
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Final year Fbar
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Final thoughts

With model averaging
• We incorporate uncertainty from scenario

choice
• It removes the need for model selection
• moves focus onto specifying plausible scenarios
• we can simulate, Fbar, reference points, current

state w.r.t. ref points

17th July 2013 19
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Petrale sole (West coast) Darkblotched rockfish (West coast) 









Conditioning 
model (CM) 

Data 
generation 

Performance 
measures 

Operating 
model (OM) … 

• Biomass ratio 
• MSY 
• Growth parameter 

All these steps are done using Stock Synthesis 
as the simulation and estimation platform 

Estimating 
model (EM) 

• survey data 
• age composition 
• length composition 
• frequency 
• sample size 

• Cod-type 
• Flatfish-type 
• Sardine-type 
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Cod-like species Flatfish-like species Sardine-like species 

MOST  
important 

LEAST 
important 

Length comps  

Age comps  

- longer comps coverage  

- survey comps 

- more frequent survey 

Length comps & 
Age comps 

Length comps  

- survey comps 

- Longer survey time 
period OR more frequent 

Age comps  

- survey comps 

- Longer survey time 
period OR more frequent 
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• Importance of the different composition data types by life-
history types 
• length comps is more important than age comps for sardine and cod 

(especially from survey). Equally important for flatfish 

• Survey comps is important across life history types 

• Sardine type fish tend to overestimate SSB depletion 
 

• Importance quantity and quality of data 
• Increasing the survey frequency and coverage important for ALL species 

(not as much for cod) 

• Increasing survey sampling frequency is important than coverage for 
sardine, equally important for flatfish and cod 
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What are cubic splines? 

• Smooth piece-wise polynomial functions.  

• Need to specify number and position of knots, estimate 
the value at these knots and the slope at the ends  



From splines to spline selectivity  

 
Spline GUI 



• Parametric forms may not be flexible enough 

- e.g. Dover sole assessment (Hicks and Wetzel, 2011) 

Why cubic spline selectivity? 
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Understanding splines in ADMB 

• Splines have long existed in ADMB, but not widely 
used for stock assessment selectivity 

• Implemented in Multifan-CL in 2005 

• Several tuna assessments 

• Implemented in Stock Synthesis in 2011. Only used in 
a few formal stock assessments based on SS: 

• Dover sole (Hicks and Wetzel, 2011) 

• Sablefish (Stewart et al., 2011) 

• Skipjack Tuna (Sharma et al., 2012) 

• Pacific Bluefin Tuna assessment (Iwata et al., 2012) 

 



Spline selectivity in Stock Synthesis 

• Current options in SS 

• User-specified number of knots (at least 3) 

• User-specified or auto placement of knots (equally spaced) 

• User-specified slope at the ends 

 

• Alternatives 

• Model selection for number of knots (e.g. use AIC) 

• Alternative knot placement  

• e.g. knots in regions where f(x) change is rapid 

• e.g. knots in regions with poor fit to the combined composition data  

 



Toy model: What shape? 
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Toy model: How many knots? 
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Current and future work 

• Test current and alternative methods for spline setup 

• Preliminary results show that the current method 
performs well, compared to alternatives 

• Use simulation-estimation approach in SS to evaluate 
the performance of spline selectivity across different 
life-histories, data availability and selectivity shapes 

• Performance metrics 

• MSY, SPB, etc 

• Provide guidance on good practices for using spline 
selectivity 

 

 



 
A method for calculating a 

meta-analytical prior for the 
natural mortality rate using 

multiple life-history 
correlates 
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The natural mortality rate (M) is an important 

parameter in most stock assessments.  

• Beverton and Holt (1957) citing Russell (1931): Four 

primary factors control changes in biomass in a closed 

population: 

• Recruitment (into the exploited phase) 

• Growth of individuals 

• Capture by fishing 

• M 

 



In the assessment context, M is simplified 

• M varies by age, size, gender and with time, inter- 

and intra-specific densities, temperature and other 

environmental factors.  

• Most, if not all, of these factors are usually ignored in 

estimation of M for use in stock assessment (or for 

estimation of M within stock assessments). 



Estimation of M within stock assessment models 

• Difficulties: 

•   Correlation with other parameters, including 

• Stock-recruitment relationship including steepness (h) 

• Catchability and selectivity 

• Fisheries 

• Surveys 

• Ageing error 

•  Dependent upon various assumptions in the model 



What if estimate of M is wrong? 

• Depends on model, but can have large impact on stock 
size and status estimation 

• e.g. 2007 U.S. west coast darkblotched rockfish 
assessment (Base M = 0.07) 
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Life History Invariants 

• Beverton and Holt (1959)  

• von Bertalanffy k and L∞, age and size of 
maturity (Am and Lm), and M (or Amax). 

• MAm = C1 

• M/k = C2 or kAmax = C’
2 

• Lm/L∞= C3 

 



Considered five published meta-analyses on M 

1. Hoenig (1983): M vs. Maximum age (Amax) 

2. Pauly (1980): M vs. k, temperature (T) and 
asymptotic size (L∞ or W∞) 

3. Jensen (1996): M vs. k 

4. Gunderson (1997): M vs. gonadosomatic index 
(GSI)  

5. McCoy and Gillooly (2008): M vs. T and W∞ 

 

Re-analysed each of these data sets. 



Hoenig 1983 

• Used log-log regression on maximum age data from fish, cetaceans 

and mollusks.  

 

• Fish only:   ln(Z) = 1.46 -1.01 ln(Amax) 

• All:        ln(Z) = 1.44 - 0.982 ln(Amax) 

 



Hoenig 1983 – Max Age  
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Hoenig 1983 
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Pauly 1980 

• 175 data points of M vs. size, k and Temp. 
• log M = - 0.0066 - 0.279 log L∞+ 0.6543 log k + 0.4634 log T 

• Log M = -0.2107 - 0.0824 log W∞+ 0.6757 log k + 0.4627 log T 

 

• But regression coefficients for fish in general may not apply to some 

taxa – e.g. Beverton’s (1992) comparison of Sebastes to long-lived 

large mammals, they may have lower coefficients and thus lower M. 

(Applies also to Jensen and McCoy and Gillooly 2008 – see below) 



Pauly 1980 - W, T and k 
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Jensen 1996 

• Thought that because his R2 for M vs. k was larger than Pauly’s R2 

for log M vs. log k, log T and log L∞, that his model was just as good, 

and the information on temperature and size was not important.  
• Found M = 1.5 k (based on optimal life history theory), or 

• M = 1.6 k (based on Pauly’s data) 

• Also: M = 1.65/Amat 

 

• Others (Roff 1984, Beverton 1992) found less consistent or tight 

relationship between k and M. 

 



Jensen 1996 - k  
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Gunderson 1997 

• Gonadosomatic index (GSI) is a measure of relative 

reproductive effort. 

• M = 1.8 *GSI 



Gunderson 1997 - GSI 
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McCoy and Gillooly 2008 

• Relate dry mass m and temperature T to biological rate 

process – M should show same dependence on m (dry wt 

grams) and T (Kelvin). 

 

• Theoretically M = Cm-.25e-7540(1/T – 1/293) 

 

• C is taxon dependent 

• On average is about  0.4 

• For fish is about 3 

 



McCoy and Gillooly 2008 

McCoy and Gillooly Theoretical M
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Previous approaches to combining meta-analyses 

Hewitt et al. 2007 

• Looked at 8 meta-analytical methods and given uncertainty in 

covariates and, in some cases, uncertainty in coefficients, to get a 

range of M for each method.  
• Did not consider uncertainty in relationship in a strict statistical manner 

Gunderson et al. 2003 

• Used confidence intervals to create uncertainty intervals for M using 

k and GSI 

• These confidence intervals did not overlap 

 

 



Confidence Intervals vs. Prediction Intervals 

• 95% confidence interval for regression: 

 

 

 

• 95% prediction interval for regression: 
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Which is correct to use? 

• Confidence intervals are correct if all of the variation is due 
to observation error (and there is negligible error in the 
observation of x). 

 

• Prediction intervals are correct if all of the variation is due 
to actual variability in the relationship. 

 

• The truth is in between – somewhere, and is complicated 
by likely bias in estimates. 



Hoenig: prediction intervals 
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Gunderson: GSI prediction intervals 
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Approach 

• Use log-normal distributions assuming sigma 

calculated from prediction intervals 

• Use variance-covariance matrix for Pauly,  

McCoy and Gillooly meta-analyses in calculating 

prediction intervals. 

• Combine these log-normal distributions to get a 

prior distribution for M 



Example: darkblotched rockfish (2007) 

Method 
Point 

Estimate 

Lower 

95% PI 

Upper 

95% PI 

Hoenig 

Max Age 
0.041 0.012 0.135 

Jensen 

k 
0.324 0.095 1.107 

Pauly 

Size, k, T 
0.223 0.073 0.683 

M-G 

W and T 
0.142 0.037 0.548 

GSI 0.109 0.043 0.272 



Combine priors 

log M
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Issues  

• How to combine priors when not independent  

 (commonality/overlap of data)? 

• One solution is to down-weight those meta-analyses that share 
data. 

 

• How do we weight these in general and for different taxa? 

• e.g. when we know Sebastes are not typical? 
 

• Are we comfortable with the assumptions of the regression analysis? 
 

• How good are the estimates of the covariates? 

• Values used in the original meta-analyses should be updated. 



Beverton 1992 

• Growth-Maturity-Longevity (GML) plots based on life history 

invariants:  

• Longevity and growth parameters determine optimal age and 

length at maturity (see Roff, 1984). 

• Relationship between k and Amax (and thus M) are taxon 

dependent. 

• In particular, Sebastes live long relative to growth rate, so M = 

0.3k not 1.6k (Jensen). 



GML plot 

kTmax

L
m

/L
in

f

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0



GML plot 

kTmax

L
m

/L
in

f

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Other Species 

Sebastes 



Background Simulation framework Results Future work

Time-varying natural mortality in fisheries stock
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2Center for the Advancement of Population Assessment Methodology

3Simon Fraser University, Burnaby, Canada
4University of British Columbia, Vancouver, Canada

July 17, 2013
1\21



Background Simulation framework Results Future work

Hypotheses for time-varying natural mortality

• Environmental variation;
• Early maturation; and
• Predator prey dynamics.

Chilean hake Jumbo squid

(Neiraa and Arancibiaa 2013)

2\21



Background Simulation framework Results Future work

Hypotheses for time-varying natural mortality

• Environmental variation;
• Early maturation; and
• Predator prey dynamics.

Chilean hake Jumbo squid

(Neiraa and Arancibiaa 2013)

2\21



Background Simulation framework Results Future work

Hypotheses for time-varying natural mortality

• Environmental variation;
• Early maturation; and
• Predator prey dynamics.

Chilean hake Jumbo squid

(Neiraa and Arancibiaa 2013)

2\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2Age-specific

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2Age-specific Time-specific

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2Age-specific Time-specific

Estimate
M

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2Age-specific Time-specific

Estimate
MEstimate

age-varying

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2Age-specific Time-specific

Estimate
MEstimate

age-varying
Estimate

time-varying

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2Age-specific Time-specific

Estimate
MEstimate

age-varying
Estimate

time-varying

Estimate time- and age-varying M

3\21



Background Simulation framework Results Future work

Alternatives to a single constant M

catch-at-age, tagging studies, life history, etc.

M=0.2Age-specific Time-specific

Estimate
MEstimate

age-varying
Estimate

time-varying

Estimate time- and age-varying M

3\21



Background Simulation framework Results Future work

Goal of the simulation
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min max solution if you suspect
M is time-varying but you

cannot estimate time-varying
M.
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Minmax solution without estimating time-varying M

MARE for Spawning Stock Biomass in the terminal year

Constant Linear ⇓ Linear ⇑ Step ⇓ Step ⇑
Fixed @ M(0) 0.09 0.11 0.11 0.08 0.14

Fixed high 1.23 1.13 1.32 1.40 0.81
Fixed low 0.30 0.32 0.28 0.28 0.36
Estimated 0.12 0.10 0.13 0.16 0.23

MARE for fishing mortality in the terminal year

Constant Linear ⇓ Linear ⇑ Step ⇓ Step ⇑
Fixed @ M(0) 0.09 0.12 0.12 0.09 0.15

Fixed high 0.55 0.52 0.58 0.58 0.46
Fixed low 0.44 0.51 0.36 0.41 0.55
Estimated 0.12 0.11 0.13 0.14 0.28
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Examining common assumptions 
about recruitment using the RAM 

Legacy Stock Assessment Database 

Cody Szuwalski, Katyana Vert-pre, 
Andre Punt, Trevor Branch and Ray 

Hilborn 



• Gilbert vs. Myers 

YES 

NO 



• Is recruitment related to spawning biomass? 

 

• Do recruitment dynamics change over time? 

 

• Are changes in recruitment dynamics 
synchronous within an LME? 



RAM legacy stock assessment database: 

• >= 20 estimates of recruitment and SSB 
• No estimates directly from a s/r curve (the tails of the time series were often removed) 
• 224 stocks 

 

Although not ‘data’, these estimates are: 
 1) used to provide management advice  
 2) incorporate many data sources and represent the best available science 
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Spawning biomass on recruitment 

Recruitment on spawning biomass 
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1970 1980 1990 2000 
‘Sequential t-test for regime shifts’; Rodionov, 2004. 





62% 
Recruitment is unrelated to spawning biomass 

38% 
Recruitment is related to spawning biomass 

24% 
Likely spurious 77% of stocks with recruitment not related to spawning 

biomass show changes in average recruitment over time 









• Recruitment for 62% of stocks doesn’t increase as 
spawning biomass does. 

• Only 14% of stocks appear to have a strong stock 
recruit relationship. 

• Recruitment dynamics change for 77% of 
environmentally driven stocks. 

• These changes often occur synchronously within 
LMEs. 



Be careful with  inference from stock recruit models when recruitment is ‘regime-like’? 



 



Flatfish-like 
time-varying selectivity 

Cod-like 
time-varying growth 

        Retrospective bias + time-varying selectivity  
=  

         good estimates of management quantities?? 





A method to identify CPUE 
values that exceed biological 

plausibility: with application to 
Atlantic Yellowfin tuna 

John Walter 

Shannon Cass-Calay 

NOAA-Fisheries SEFSC 
 



http://www.iccat.int/en/ 2 

2011 ICCAT Yellowfin tuna assessment surplus production model indices -16 



http://www.iccat.int/en/ 3 

In practice some combined index weighted often produced 

Weighted combined index 



Does an index make biological sense or “Is it consistent 

with production model dynamics?” 

 
 

 

* In context of Schaeffer SPM 

 
4 

%increase as function of r and Bt/K*    



Method definition: 

 

1. Upper bound (UBt+1) for the following year can be 

estimated by assuming that no fishing occurs as follows: 

 

𝑼𝑩𝒕+𝟏 = 𝑩𝒕 + 𝒓 ∗ (𝑩𝒕) ∗ (𝟏 − 𝑩𝒕/𝑲)     

  

Where Bt and Bt+1 are biomass at time t and one year 

later, K is the carrying capacity, and r is the intrinsic rate of 

population increase.  
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Method definition, continued 

 

2. Lower bound (LBt+1) for the subsequent year index 

value. Where population grows for entire year and then is 

reduced by exploitation at end: 

 
𝑳𝑩𝒕+𝟏 =  𝑩𝒕 + 𝒓 ∗ (𝑩𝒕) ∗ (𝟏 − 𝑩𝒕/𝑲)  ∗ (𝟏 −
𝒎𝒂𝒙𝑼)     

 

using assumed maximum rate of annual exploitation, 

maxU.  
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Key assumptions 
 

1. r known 

 - but method relatively insensitive 

2. B1/K, or Bt/K for indices that start later than B1 

 

3. Maximum rate of single year depletion 
 - maximized if all fishing is at the end of the year 

 

4. Production model dynamics 
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Sensitivity analyses to r and Bo/K  
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Application to 2011 YFT production model indices 
  

- All indices were weight-based indices and assumed to represent the entire 

population biomass within the surplus production models 

 

Assumptions 

- ASPIC models assumed that B1=K, also use a value of 1 for B1 for the 

indices that start within the first 6 years of t=1.  

- For all other indices we assume that B1=0.5 

- r=0.46 from ASPIC (Anon 2008) assessment estimate  

- Maximum observed single year exploitation rate of 0.41 (Anon 2008 ).  

 

Sensitivity to initial value of B1 are presented. 
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Index 

Plausibility bounds 
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Above plausibility bounds 

Below plausibility bounds 



Performance criteria 

1. Magnitude of 

divergence 

 

2. Percent of index 

values outside of 

range 

 

3.   Time trends 

12 



http://www.iccat.int/Documents/Meetings/Docs/2012_METHODS_REP_ENG.pdf 

13 

ICCAT Working group on stock assessments index evaluation table 
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Caveat 1: Biological plausibility- defined 

according to the biology that we give the 

model 

 

Caveat 2: index can be highly noisy but 

still have a useful trend. 

 

Caveat 3: age(s) specific indices… can 

between vary up to level of sigma r . 

 

Caveat 4: models can handle process 

error. 

 

 

 

 

 

 

 

 

 

 

Age 0 index for Red 

snapper 

Caveats 



Recap 

1. Method requires: (1) an estimate of r, to which the 
method is not particularly sensitive, (2) an estimate 
of the stock status at the beginning of index time 
series and (3) some estimate of the maxU  

2. Plausibility bounds useful for identifying 
unaccounted for process error i.e., interannual 
variability inconsistent with model dynamics and 
assumptions 

3. Useful for determining suitability of an index but not 
sole criterion for exclusion/inclusion 

4. In practice it can identify process error issues not 
considered by index authors or included in model 
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A stock synthesis model for Western 
Bluefin tuna: 
 

Key challenges for moving from VPA to 
SCAA 

Shannon L. Cass-Calay  
John Walter 
NOAA-Fisheries SEFSC 
 



Objectives: 

Virtual Population Analysis (VPA) 

• PRO: modest data requirements  

• CON: requires strong assumptions (i.e. catch-at-age known )  

    

 

 

 

Statistical Catch at Age (SCA) 

      Relaxes assumption that CAA is known exactly 

 Can use length composition directly 

 Integrated model may better handle process errors 

 May better estimate growth and productivity 



SS model Data Inputs (similar to VPA and MAST): 
 • Years: 1950-2011 

• Ages: 0-25+ 

• One Gender (M+F) 

• One Area (Western Atlantic) 

• 8 Fleets  

• 10 CPUE Indices of Abundance, 1 larval survey (SSB proxy) 

• Catch at age from cohort sliced catch at size*** 

• Age-Based Selectivities modeled with double normal or 
logistic patterns 

• Biological Parameters fixed: 

• M = 0.14 Linf = 315 cm, K = 0.089 

• Knife-Edged Maturity at 9+ 

• Fecundity Proxy = WAA 
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Fleet Structure: 
 

• 8 Fleets: 

• JAPAN _LL 

• USA_CAN_PS 

• USA_CAN_TRAP 

• USA_CAN_HARPOON 

• USA_ HOOK&LINE 

• USA_LL 

• CAN_ HOOK&LINE 

• OTHER 

 

 4 

%Total Landings by Flag and Gear 



Modeling Selectivity: 
 • Used age-based 
functional shapes 
available in SS3 
 

• Double Normal: All 
fleets and indices 
except: 
 

• Logistic: USA LL, 
US_RR>195cm, 
JAPAN_LL_GOM 
 

• SSB Index: SEAMAP 
Larval Survey 
 

5 10/4/2013 
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VPA  Catch at age sliced from catch at length, for each fleet.  Age comp 
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VPA  Catch at age sliced from catch at length, for each fleet.  Age comp 
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Stock Synthesis Modeling (nested structure) 

 
1. Age-structured Prod. model (est steepness and R0) 

 

2. Age comp 

 

3. Age comp and estimate recruitment deviations 

 

4. Length observations- TBD 
 



Piner plots 
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Estimability of productivity in production model  

For full age comp 

and rec dev model 

steepness 

bounded at 0.99 
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Selectivities 
 

11 bounded selex parms 
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Age comp fits 
 

Substantial 

residual 

patterns, 

particularly in 

1965-1980 
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Preliminary results 

 



- Preliminary results similar to VPA but model performance is poor 
due to bounding 

 

- Preliminary model- Fleet structure, time blocks and selex 
decisions need to be reevaluated in consultation with national 
scientists 

 

- Vagaries of construction of catch at age further complicate 
estimation of selectivities Goal is to move to using observed 
lengths 

 

- Time varying selectivities pose a substantial difficulty 
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Preliminary conclusions/concerns 

 



Grand question: when is a VPA better 

than SCAA 

Vastly time varying 

selectivities…. 

 

Testable HO:  

VPA> SCA when sigma 

on CAA < sigma on 

annual change in 

selectivity 
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Time series assessment 

of catch-at-age data: 

North Sea cod, haddock, plaice 

and Georges Bank yellow flounder 
  

Gudmundur Gudmundsson and  

Thorvaldur Gunnlaugsson thg@hafro.is   
 

Marine Research Institute, Iceland 

Full model is elaborate and may include surveys. 
 
Common simplifications can be tested by statistical methods. 

WCSAM 2013 Key Challenges for Single Species Assessments 1.20     

mailto:thg@hafro.is


State-space approach 
 

First implemented as extended Kalman Filter 
 
Used for many years in Icelandic groundfish assessments, 
for model comparison (good performance, in retrospect) 
 
Experimental use with length-based assessments 
 
Recently emulated in ADMB-RE with time-varying selectivity, 
stock and recruitment as random effects 

TS assessment of CA data 



Full description of model has been published: 
 

Selection and estimation of 
sequential catch-at-age models 

 

Gudmundur Gudmundsson and Thorvaldur Gunnlaugsson 

Can. J. Fish. Aquat. Sci. 69:1760–1772 (2012) 

 
 

Conventional notation is used where:  

c, n, f, z represent logs of 

Catch, Stock, Fishing and total mortality. 

TS assessment of CA data 



In Kalman Filter all assignments have variance 

n
a+1, t+1 

= n
a, t  

- F
a,t

 - M + ε
a, t   

 

where the error variance (noise) may be estimated zero. 
 
 

Emulation in ADMB-RE, no assignments but: 
 

       objective_function_value g 
       random_effects_matrix n(a,t) 
 

assuming no covariance: 
 

   SEPARABLE_FUNCTION stock( ... ) 
       g += -log(sigma_n) 

-0.5*norm2((n(a,t)-F(a,t)-M-n(a+1,t+1))/sigma_n) 

TS assessment of CA data 



Fishing effort is modeled as the sum of the product of 
state variables ψ

j,t 
(with random walk and/or transitory 

changes) and prefixed selection patterns by age: 
 

f
a, t 

= ∑
j  
ψ

j, t
Γ

j,a
  + δ

a, t   
 

where the prefixed selection patterns by age are: 

Γ ≡ [constant, parabola, extreme young and/or old]  
 
 

TS assessment of CA data 



The observation error in the catch:  
 

- variance allowed to be parabolic with age 
 

- tested for correlation in residuals 
 
 

The stock-survey relationship is tested for  
non-linearity 

TS assessment of CA data 



Tests on the need to include all variances have been 

published in open access:  

 

Some catch-at-age analysis methods 

and models compared on simulated data 

 
Thorvaldur Gunnlaugsson 

Open J. Mar. Sci. 2:16–24 (2012) 

 

Also compares Penalized Likelihood to State Space. 

TS assessment of CA data 



No gain in estimating noise in F
a,t    

(ζ
F
 = 0) 

 

   →  May drop random_effects_matrix f(a,t). 

 

 

Natural mortality (M) can not be estimated 

         unless effort is highly variable. 

 
 

For these four stocks, no evidence against the predetermined 

values for M was found in tests, so those values were used. 

TS assessment of CA data 



The results of applying this model to the 

NS cod+haddock+saithe and GB yellow flounder are 

available online: 

 

 

http://www.hafro.is/~thg/sisam/ 

 
with some ADMB-RE code. 

TS assessment of CA data 



NS cod SSB from retrospective analysis 

TS assessment of CA data 



NS haddock SSB from different models 

TS assessment of CA data 



NS plaice SSB retrospective analysis 

TS assessment of CA data 
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